Strategic feeding of sheep to alleviate heat stress and improve their production

Das, N. G.¹, Bhanugopan, M. S.¹, McGrath, S.¹, Friend, M.¹, Holman, B.², and Ataollahi², F.

Charles Sturt University

¹School of Agricultural Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW – 2678, Australia ²Department of Primary Industries, NSW - 2650, Australia

Background

- Extreme weather events such as heat waves, drought, and prolonged rainfall are increasing worldwide due to climate change (IPCC, 2023).
- □ The annual average surface temperature is increasing in Australia (Figure 1).
- □ The high environmental temperature (above 25°C) from November to March (Figure 2), may cause heat stress and reduce animal production.

Figure 1

Proposed Research

The proposed project will conduct four feeding trials:

- Study 1 Supplementation of SFC or RPF to alleviate heat stress of feedlot & 2 lambs
- Study 3 Increasing dietary protein density to ameliorate heat stress of summer lambs
- Objecti D To mitigate heat stress of feedlot lambs during summer.

Anomalies in temperature in Australia compared to the standard average temperature of 1961-1990 (BOM, 2022)

Figure 2

Annual average temperature and humidity in Australia (CCKP, 2024)

Heat stress impacts on animal production

- □ High ambient temperature (>25°C) may interfere with the thermoregulation of sheep, leading to heat stress (HS) (Figure 3)
- □ HS reduces feed intake and changes the normal physiological and metabolic activities, resulting in poor production and reproduction (Figure 4) (Gonzalez-Rivas et al 2020).

□ To protect premortem tissue catabolism, improve productivity, ves carcass composition, and meat quality of feedlot lambs.

Materials and methods

Design of the experiments

Study 1 & 2 (Animals: Merino/Composit lambs; 3-4 months)							
	Ļ	¥					
Conventional diet	SFC/RPF diet	Conventional diet	SFC/RPF diet				
Replication: 5 pens (3 lambs/pen)	Replication: 5 pens (3 lambs/pen)	Replication: 5 (3 lambs/pen)	Replication = 5 (3 lambs/pen)				
Feeding: 3.5% LW	Feeding: 3.5% LW	Feeding: Ad libitum	Feeding: Ad libitum				

Sequence of events						
 Live Weight Body Condition Score (BCS) Shearing Drenched Vaccinated Allocated to pens Adaptation to diets 	 Experiment start Live Weight BCS Experiment al dietary treatments start Blood collection 	 Daily feeding Daily Measurement and recording of feed refusals Rectal temperature – Weekly Blood collection – Fortnightly Live weight – Wookly 	Duration of study: 7 End of trial • Reaches slaughter weight (approx. – 55 to 60 kg) • Live weight • BCS	 70 - 90 days Post-trial slaughter General data from abattoirs Collection of specimens for further meat quality analysis 		

□ The meat of heat-stressed lambs is dark firm and dry (DFD) which is of poor quality, and sold at a discount price, causing economic loss (Zhang et al., 2024; Ponnampalam, et al., 2017).

Figure 3

Impacts of high ambient temperature on the thermoregulation in sheep

Figure 4

Heat stress alters physiological mechanisms and productivity in sheep (*McManus et al., 2022*)

Parameters to be studied

Items	Parameters
Weather data	Temperature, RH, wind speed, solar radiation
Heat stress biomarkers	Respiratory rate, Rectal temperature, Rumen temperature
Production parameters	Live weight gain, Feed conversion ratio, Cost of production
Blood biomarkers, representing tissue catabolism	BUN, Total protein, Free amino acids (AA) Glucose, Lactate, NEFA, Beta-hydroxybutyrate (BHA), Oxidative stress index
Body composition and carcass characteristics	Hot carcass weight, Dressing percentage, Chilled carcass weight Carcass composition (fat, lean muscle, and bone)
Meat Quality	pHu, Glycogen and Lactate; Shear force, Colour

Conclusions

□ The results of studies will help farmers formulate a diet that will minimize nutrient deficiency and mitigate the heat stress of lambs during summer □ The productivity of summer lambs and meat quality will be improved. □ The profitability of the meat industry may be increased.

References

BOM, (2022). Bureau of Meteorology. State of the Climate 2022. bom.gov.au/state-of-the-climate helpdesk.climate@bom.gov.au CCKP, (2024)Knowledge Group Climate Change Portal World https://climateknowledgeportal.worldbank.org/country/australia (accessed on 12 September 2024) Cheng, M., McCarl, B., & Fei, C. (2022). Climate change and livestock production: a literature review. Atmosphere, 13(1), 140. Dixon, R. M., Thomas, R., & Holmes, J. H. G. (1999). Interactions between heat stress and nutrition in sheep fed roughage diets. The Journal of Agricultural Science, 132(3), 351-359. Garner, J. B., Williams, S. R. O., Moate, P. J., Jacobs, J. L., Hannah, M. C., Morris, G. L., ... & Marett, L. C. (2022). Effects of heat stress in dairy cows offered diets containing either wheat or corn grain during late lactation. *Animals*, 12(16), 2031. Gonzalez-Rivas, P. A., Chauhan, S. S., Ha, M., Fegan, N., Dunshea, F. R., & Warner, R. D. (2020). Effects of heat stress on animal physiology, metabolism, and meat quality: A review. *Meat science*, 162, 108025.

Heat stress mitigation strategy

□ Research suggests that supplementing slowly fermentable carbohydrates (SFC), rumen-protected fat (RPF), and increasing dietary protein may produce low heat-increment diets and mitigate HS symptoms (Garner et al., 2022; Kim et al., 2022; Gonzalez-Rivas et al., 2017; Knap and Grummer, 1991; Huber et al., 1994; Dixon et al., 1999).

Research gaps and hypothesis

- The previous studies did not investigate nutrient utilization efficiency Gaps and profitability of feeding dietary supplementation.
 - □ They did not study any benefits of supplementation (SFC & RPF) and feeding high-protein diet on preventing premortem tissue catabolism, post-mortem carcass composition, and meat quality of feedlot lambs.
- **Hypot** We hypothesize that supplementing SFC and RPF as energy sources **hesis** and increasing dietary protein levels of feedlot lambs may increase nutrient intake and utilization efficiency, and improve production performances, meat quality, and profitability.
- Gonzalez-Rivas, P. A., DiGiacomo, K., Giraldo, P. A., Leury, B. J., Cottrell, J. J., & Dunshea, F. R. (2017). Reducing rumen starch fermentation of wheat with three percent sodium hydroxide has the potential to ameliorate the effect of heat stress in grain-fed wethers. Journal of Animal Science, 95(12), 5547-5562

Huber, J. T., Higginbotham, G., Gomez-Alarcon, R. A., Taylor, R. B., Chen, K. H., Chan, S. C., & Wu, Z. (1994). Heat stress interactions with protein supplemental fat, and fungal cultures. Journal of Dairy Science, 77(7), 2080-2090

- IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34, doi: 10.59327/IPCC/AR6-9789291691647.001
- Kim, W. S., Ghassemi Nejad, J., Peng, D. Q., Jo, Y. H., Kim, J., & Lee, H. G. (2022). Effects of different protein levels on growth performance and stress parameters in beef calves under heat stress. *Scientific Reports*, 12(1), 8113.
- Knapp, D. M., & Grummer, R. R. (1991). Response of lactating dairy cows to fat supplementation during heat stress. Journal of *dairy science*, 74(8), 2573-2579. <u>https://doi.org/10.3168/jds.S0022-0302(91)78435-X</u>
- McManus, C. M., Lucci, C. M., Maranhão, A. Q., Pimentel, D., Pimentel, F., & Paiva, S. R. (2022). Response to heat stress for small ruminants: Physiological and genetic aspects. *Livestock Science*, 263, 105028.
- Ponnampalam, E. N., Hopkins, D. L., Bruce, H., Li, D., Baldi, G., & Bekhit, A. E. D. (2017). Causes and contributing factors to "dark cutting" meat: Current trends and future directions: A review. Comprehensive Reviews in Food Science and Food Safety, 16(3), 400-430.
- Zhang, S., Zhang, Y., Wei, Y., Zou, J., Yang, B., Wang, Q., ... & Jiang, Q. (2024). Effect of heat stress on growth performance, carcase characteristics, meat quality and rumen-muscle axis of Hu sheep. *Italian Journal of Animal Science*, 23(1), 87-100.