
Legumes For Sustainable Agriculture

ARC ITRH 2015

Presented by Associate Professor Brent N. Kaiser

Centre for Carbon Water and Food Faculty of Agriculture and Environment Camden NSW.

Legumes for Sustainable Agriculture

- ARC Industrial Transformation
 Research Hub ITRH
- ARC Program Goals
 - Discovery-led research
 - Applied research
 - Translational research for industry outcomes
- A GRDC Investment

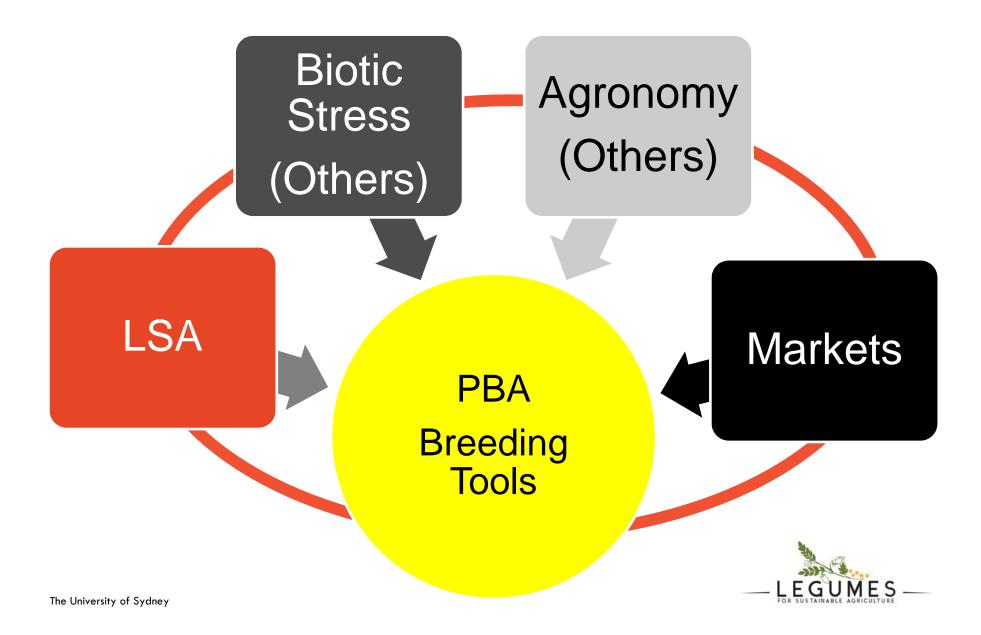
Australian Government

Australian Research Council

Partnerships and Investors

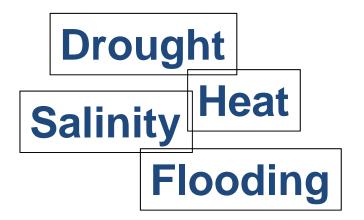
- Universities (6)
- State-based agencies (2)
- Wheat Research Foundation
- Impending growth
 - La Trobe, others..
- \sim 14.5 million (cash and in-
 - 5 year research program

The University of Sydney

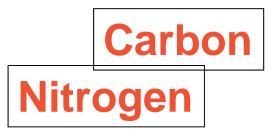

Legumes for Sustainable Agriculture

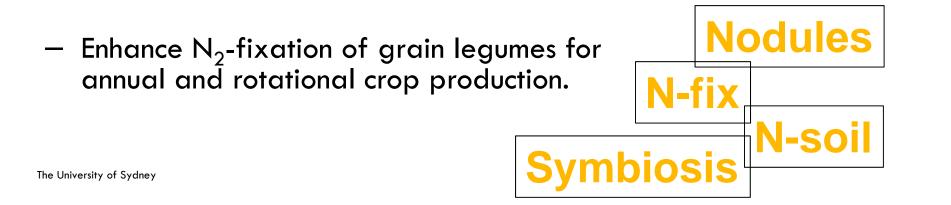
- Purpose of LSA:

- Establish a National Research HUB focused on improving grain legume productivity and agricultural sustainability
- Capture complimentary plant-based skills and re-position for a Grain Legume Focus
 - Plant Physiology
 - Biochemistry and Molecular Biology
 - Symbiotic biology and soil interactions
 - Genetics and genomics
 - Pre-breeding
- Identify new traits that improve legume productivity in Australia
 - Pre-breeding pipelines to translate discoveries for use by breeders

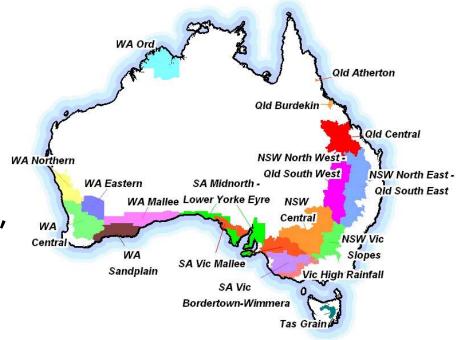


Complimentary R&D within Australia

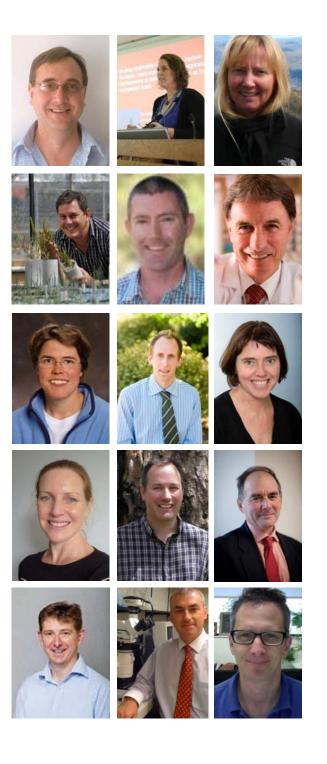



LSA Research Aims

Develop grain legumes for increased resilience to abiotic stress.


 Optimise plant resource partitioning to enhance the efficiency of yield production under stress.

Research Locations


- Narrabri IA Watson Grains Research Centre
- Sydney Camden campus, Australian Technology Park, Lansdowne, PBI Cobbitty
- **Canberra** ANU campus
- Adelaide/SA UA Waite campus, Flinders University
 - Southern regional field sites
- Perth/WA UWA Campus
 Western regional field sites
- Others QLD, Victoria

Who is involved?

- Lead Agency University of Sydney
 - Director: Brent Kaiser
 - Deputy Director: Richard Trethowan
- Chief Investigators
 - USyd: B Kaiser, R. Trethowan, M.
 Barbour, H. Bramley, A. Merchant,
 P. Smith, R. Deaker, M. Adams
 - UWA: T. Colmer
 - UA: M. Denton
 - SARDI: T. Sutton
 - ANU: U. Mathesius
 - Flinders: D. Day (also USyd)

Who is involved?

- Partner Investigators
 - GRDC: Juan Juttner
 - NCSU: D. Bird
- Additional Researchers
 - 13 postdoctoral scientists
 - M. Unkovich (UA) consultant
 - Technical support
 - HUB Coordinator
 - PhD students

Model System: Chickpea

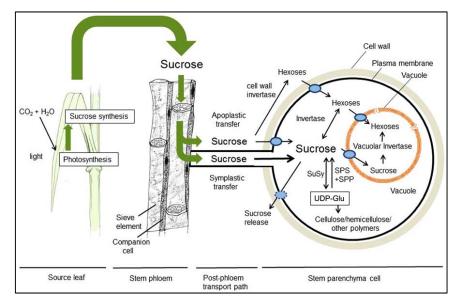
- Is a 'legume of choice' across many growing regions
- Extensive collection of genetic resources already imported into Australia
- Genome sequenced and annotated
- Molecular tools
- Useful rotation for wheat and canola

Other legumes?


- Faba bean
- Field Pea
- Models: Medicago and Soybean

Theme 1 - Identify and develop grain legumes for increased resilience to abiotic stress

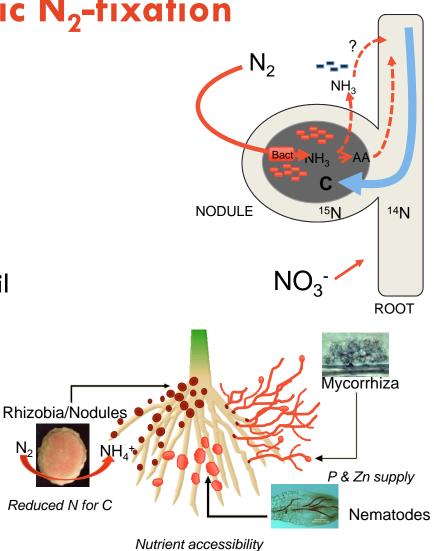
- Research Targets
 - Addressing temperature tolerance during reproductive growth
 - Minimizing the impact of extended drought
 - Improving salinity tolerance in chickpea
 - Improving flooding tolerance to mitigate root disease
 - Defining tools to manage legume oxidative stress



Theme 2 - Resource partitioning under stress

Research Targets

- Identify <u>biomarkers</u> for growth and yield under stress
 - Leaf-based tools to predict stress tolerance
 - C and N biomarkers
- Modelling and physiological testing of C-gain, NUE and WUE



The University of Sydney

Theme 3 - Enhance symbiotic N₂-fixation

Research Targets

- Improve nodule N_2 -fixation efficiency
- Plant support of the legume rhizobia symbiosis
- Develop diagnostic tools to quantify soil
 N delivery from N₂-fixing plants
- Increase rhizobia effectiveness and perseverance in hostile soils
- Understand and manage symbiotic (Rhizobia, AM fungi) and parasitic interactions (nematodes)

Legumes for Sustainable Agriculture

Expected Outcomes

- Identify and deliver basic discoveries that benefits growers
 - Novel trait discovery
 - Productive traits
- Development of improved germplasm
 - Abiotic stress tolerance (temperature, drought, flooding, nutrient availability)
 - Effective N₂-fixation capacity and soil N deposition
 - Legume rotational benefits: yield increases, N deposition and follow on crop enhancement
- Increased environmental stewardship
- Increased grower profitability

N₂-FIX YIELD HEAT DROUGHT NUE WUE

The University of Sydney

Where are we now?

- Official Launch
 Oct 24th, 2016
- Appointment of staff
- 2016 germplasm collection and seed bulking
 - Mapping populations
 - Diversity sets
- Preliminary trials of drought tolerant chickpea
 - 2014-16 (PhD)

Thankyou!

Australian Research Council

