F. R. BACHLER

PROCESS OF MAKING LEGUMINOUS FLAKES

Filad Aug. 1, 1927

(FAOSTAT)

World Pulse Production

New Product Releases Per Year Containing Pulse Ingredients In China and Europe

Source: Agriculture and Agri-Food Canada (AAFC):

- Innovation Series New Products Containing Pulse Ingredients In China.
- New Food Products with Pulse Ingredients Launched in the European Union

Current Pulse Processing **FGC**

No

Anti's

Great

taste

Milling to Flour, Deoderising, Blending

Cooking, Flaking/Rolling, Puffing, Roasting, Frying, Extrusion

Germination, Fermentation, Dehulling, Fractionation by wet methods, solvents (aqueous and organic), air classification

Low GI

Inclusion to enrich other foods,

bread, biscuit, breakfast cereals, meat based products, free meat products

Ready to eat and convenient foods

Snack bars, Chips, Dips Quick cook, precooked

Functional ingredients:

High protein, high fibre, treated flours (roasting), seed coat (fibre), high bioactivity, low GI, Reduced FODMAP

Improve

shelf

life

ARC Industrial Transformation Training Centre for Functional Grains

Great

Protein

csu.edu.au/research/fgc

Traditional Pulse Products

- Whole pulses, Dry whole, Precooked/canned,
- Splits/Dhal, (Soups, home cooking)
- Milled Pulses: Raw flour, Cooked Flour, Grits, Meal/kibble, Flakes,
- Fractionation: Protein powder, Starch powder,

North American Pulse Processors Ingredient Value Adding Capability

Source: Membership of Pulse Canada, Northern Pulse growers Association

ARC Industrial Transformation Training Centre for Functional Grains

Australian Value Added Pulse Products

Future opportunities

Expansion of Functional Nutrition Products

- High protein foods
- Protein modification ingredient,
- Functional proteins
- High fibre foods
- Gluten free foods
- Meat free foods/ Vegan
- Low GI foods

Functional proteins

- Improve pulse protein physicochemical functionality to compete with soy protein as a texturized protein.
- Nutraceuticals e.g. protein hydrolysates,

- Image Poor mans food vs Superfood
- **Culture** niche -> staple
- Limited choice of affordable specialised ingredients
- Different physicochemical properties to wheat and corr
- Limited technological information on pulse functionalities
- Application of pulses to existing processing equipmen
- Education pulse processing properties
- Optimisation of technology
- Processing cost effectiveness: less waste + more value
- Improve nutritional benefits
- Minimise anti nutritional and beany flavors.

Acknowledgements

Australian Research Council – Industrial Transformation Training Centre (ITTC)
Scholarship

Industry partner Woods Foods
Supervisors

Professor Christopher Blanchard.

Dr Asgar Farahnaky, Professor John Mawson

