
Environment impact on grain quality

Rachelle Ward, Lorraine Spohr and Peter Snell

www.dpi.nsw.gov.au

Recent production

http://www.rmbnsw.org.au/statistical-summary

Recent production challenges

Average monthly rainfall	Year 2000/01 2001/02 2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 2009/10 2010/11 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16 2016/17 250 200 150 100	90% 77% 38% 41% 43% 57% 15% 18% 26% 31% 105% 105% 68% 53% 37% 100%	High Security 95% 95% 95% 95% 95% 95% 95% 95% 100% 100% 100% 95% 95% 95% 95% 100%	Image: state stat
rage mc	بے ₁₀₀ -			
Ave	0	while	MM M	WWWWWWWWWWWWWWW
Det	Jan-OC		n-03 Jan-04 Jan-05	Jan-06 Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14 Jan-15 Jan-16 Dec-16 Dec-16 Dec-16 Name of program

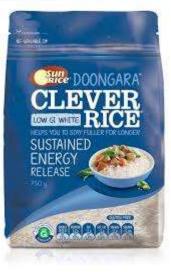
Data from BOM and http://www.mirrigation.com.au/Content/Documents/Historical-Allocation-Availability

Approaches for production and quality

Rice must be of good, consumer accepted quality

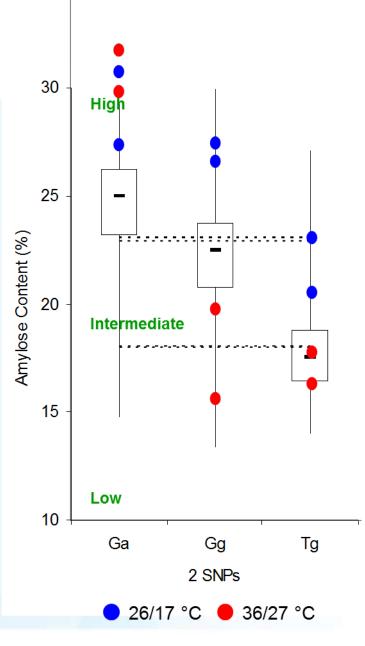
SESSION 1 – breeding Varietal improvements SESSION 2 - quality and marketing Agronomic advances Market requirements for a good industry SESSION 3 – health qualities Consumer driven quality

How do we achieve these production AND quality goals under challenging production conditions?


Focus on amylose

Amylose content (and structure)

- differentiates our commodities
- drives digestibility, GI
- explains texture
- vulnerable to growing temperatures
- parcel all these up into a breeding and agronomic package



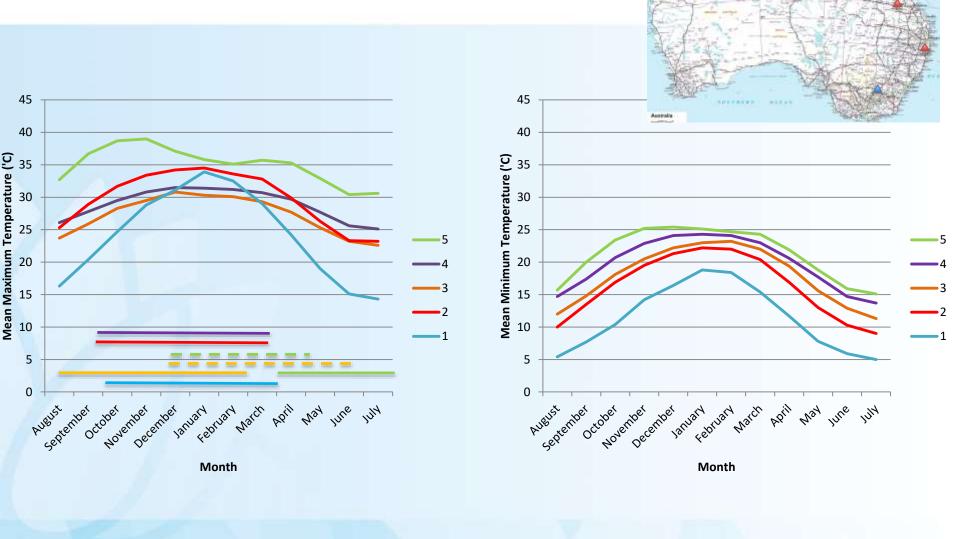
Glasshouse trials

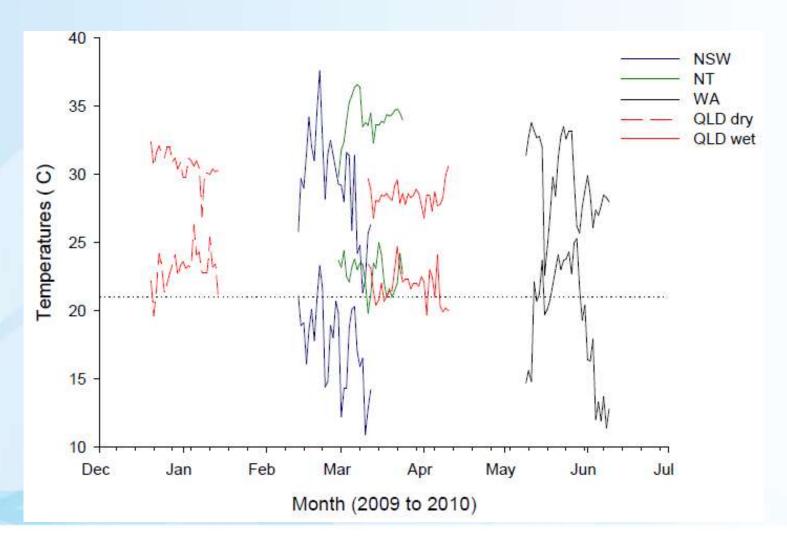
Ability to focus on one abiotic stress in isolation

Ability to focus on one specific grain quality trait

Variety	Amylose (%) 26 / 17 °C	Amylose (%) 36 / 17 °C	Amylose (%) 36 / 27 °C
Amaroo	16.5	14.7	14.3
Langi	23.9	15.4	17.2
Doongara	27.8	17.9	15.6
IR64	24.7	20.5	18.0

Advanced District Trials


- Conducted every second year in the Rice Partnership
- Trials of Australian varieties grown across the traditional production systems
- Capture changes in quality over time and location
- Informs recommendations and used for varietal release
- Southern region only


Australia – matching southern quality

Australia

Temperature at grain-filling

Meta-dataset

Origin of data

- Compiled from multiple ancillary projects
- Spans 8, now 9 years
- 13 locations in 5 subgroups
- 2 seasons, wet(w) and dry(d) in some years and locations

Grain quality data

- More than 200 varieties, only 66 common to 2 or more locations
- Physical, compositional and functional grain quality data
- Amylose content is central to many consumer relevant traits

						Harvest Year					
Group	Location	State	2008	2009	2010	2011	2012	2013	2014	2015	2016
1	Yanco	NSW	d	d			d	d	d		
2	Lismore	NSW		d	d	d					
2	Emerald	Qld		d							
3	Mackay	Qld	d <i>,</i> w	d <i>,</i> w	d <i>,</i> w	d <i>,</i> w	d	w	d <i>,</i> w	d <i>,</i> w	d
4	Ayr	Qld								d	
4	Burdekin	Qld								d	
4	Tully	Qld								d	
4	Mareeba	Qld		d							
4	FNQ	Qld								d	d
5	Ord River	WA		d							
5	Kununurra	WA			w						
5	Katherine	NT			d						
5	Tortilla Flats	NT				d <i>,</i> w			w	d	N

Meta-analysis – seasonal variation

Wet v dry season in Group 3 (Mackay only)

Variety	Amylose (%) ± s.e. dry season (n)	Amylose (%) ± s.e. wet season (n)	Protein (%) ± s.e. dry season (n)	Protein (%) ± s.e. wet season (n)
Куеета	17.9 ± 0.2 (30)	17.7 ± 0.1 (9)	9.6 ± 0.3 (30)	9.3 ± 0.2 (9)
Topaz	16.2 ± 0.1 (14)	16.4 ± 0.2 (4)	10.4 ± 0.2 (14)	9.3 ± 0.5 (4)
Quest	15.5 ± 0.1 (9)	15.6 ± 0.21 (7)	8.2 ± 0.3 (9)	10.4 ± 0.2 (7)
Langi	16.7 ± 0.1 (18)	15.6 ± 0.2 (13)	8.9 ± 0.3 (18)	10.1 ± 0.2 (13)
Doongara	24.8 ± 0.2 (18)	23.9 ± 0.2 (18)	8.4 ± 0.2 (18)	8.5 ± 0.2 (18)

Note: Data averaged across all years of available data

Meta-analysis – locational variation

Apparent amylose content (%)

Group 1	Group 2	Group 3	Group 4	Group 5
18.6 ± 0.2 (2)	NA	17.3 ± 0.1 (77)	19.3 ± 0.3 (3)	17.2 ± 0.3 (19)
NA	NA	15.2 ± 0.2 (37)	17.4 ± 0.3 (3)	14.7 ± 0.5 (3)
NA	19.4 ± 0.2 (8)	15.8 ± 0.2 (27)	NA	15.6 ± 0.6 (16)
19.7 ± 0.3 (7)	17.4 ± 0.2 (2)	15.9 ± 0.1 (45)	19.7 ± 0.2 (3)	13.7 ± 0.4 (10)
23.1±0.3 (2)	26.3 ± 0.1 (2)	24.0 ± 0.1 (61)	25.3 ± 0.2 (3)	23.8 ± 0.3 (27)
	18.6 ± 0.2 (2) NA NA 19.7 ± 0.3 (7)	18.6 ± 0.2 (2)NANANANA19.4 ± 0.2 (8)19.7 ± 0.3 (7)17.4 ± 0.2 (2)	18.6 ± 0.2 (2)NA 17.3 ± 0.1 (77)NANA 15.2 ± 0.2 (37)NA19.4 ± 0.2 (8) 15.8 ± 0.2 (27)19.7 ± 0.3 (7) 17.4 ± 0.2 (2) 15.9 ± 0.1 (45)	18.6 ± 0.2 (2)NA17.3 ± 0.1 (77)19.3 ± 0.3 (3)NANA15.2 ± 0.2 (37)17.4 ± 0.3 (3)NA19.4 ± 0.2 (8)15.8 ± 0.2 (27)NA19.7 ± 0.3 (7)17.4 ± 0.2 (2)15.9 ± 0.1 (45)19.7 ± 0.2 (3)

Are changes in amylose content reflected in textural and digestibility properties?

Is amylose content sufficient to explain functional properties?

Meta-analysis – locational variation

Protein content (%)

Variety	Group 1	Group 2	Group 3	Group 4	Group 5
Kyeema	7.4 ± 0.1 (2)	9.6 ± (1)	9.5± 0.2 (77)	7.7± 0.3 (3)	7.7 ± 0.2 (19)
Topaz	NA	NA	10.5 ± 0.2 (37)	8.5 ± 0.6 (3)	9.8 ± 0.3 (3)
Quest	6.3 ± 0.0 (2)	9.3 ± 0.2 (8)	9.5 ± 0.2 (27)	NA	8.9 ± 0.4 (16)
Langi	7.0 ± 0.2 (7)	7.0 ± 0.1 (2)	9.3 ± 0.2 (45)	11.5 ± 0.1 (3)	8.0 ± 0.3 (10)
Doongara	6.8 ± 0.3 (2)	7.0 ± 0.1 (2)	8.6 ± 0.1 (61)	6.9 ± 0.6 (3)	8.3± 0.3 (27)

Where to next.....

- Meta-datasets are valuable and will be added with each project
- Amylose content is a surrogate for many consumer recognizable traits

.....but many other quality traits offer advantageous benefits

- Season by variety opportunities to capitalise on high-end quality
- Edible whole grain that seamlessly blends with Riverina material
- At least two fresh crops annually to supply market
- Market success through consistent product delivery

Acknowledgements

Growers at each location YAI – cereal chemistry team for lab work NSW DPI biometricians Various projects that generated the samples