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Introduction
African Lovegrass (ALG), Eragrostis curvula, is a grass indigenous to Africa, which has
spread to Australia and is considered an invasive species, as it threatens livestock foodstuff.
ALG is itself not edible and diminishes the volume of edible content in a pasture. It requires
monitoring and treatment through herbicides or other control measures, however, before it
can be treated it needs to be identified.
From an elevated aerial perspective, such as from UAVs, it is difficult to identify, as the fine
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strands of the grass intertwine with other grasses. Hence, the outline of the grass is almost
impossible to delineate, making for an interesting computational detection problem:

The Figure shows the growth cycle of ALG, from old seed heads through to maturity across
the seasons.
it is evident that the grass is difficult to delineate and moves from a yellow-coloured status
through green and lush states, to a grey-purple flowering status before repeating the cycle
over.

Similar Species
As it is a grass, there are plenty of species that look alike and also appear in the same
environments. Of these, some include:

● Soft Brome
● Prairie Grass
● Vulpia
● Barley Grass
● Wild Oats



The Figure shows a quadrat collected at the Glide Club site in december 2022, with multiple
false positive species:

1. Vulpia
2. ALG
3. Prairie Grass
4. Soft Brome

To the uneducated eye, these may be almost indistinguishable. In machine learning, these
are termed “false positives”, as they resemble ALG and may be identified as such.



Datasets
The datasets were generated by using models trained on Multispectral (MS) imagery, overlaid with RGB orthomosaics. One model was
developed for each growth stage, one for site 1 and tested on site 2, and another on site 4 and tested on site 3. The pixel-wise labels were
generated from the MS model and propagated to the overlaid higher-resolution RGB model by upscaling.

Datasets Name
Date of
RGB

Type of
RGB

Type of
MS Date of MS Growth Stage Quadrats

GroundTruth
Quadrats

Images
before
cleaning

Images
after
cleaning
WHITE

Images
after
cleaning
BLACK

Site 1
Mc
Donald's

13/12/202
2 Fuji 50

MicaSense
Altum 13/12/2022 Flowering 10

Link to
OneDrive 8900 8901 7747

Site 2
Gliding
Club

14/12/202
2
DJI_P1
40m

MicaSense
Altum 15/12/2022 Flowering 10 15130 15130 10775

Site 3

Kuma
Nature
Reserve

06/12/202
3 Fuji NR

MicaSense
RedEdge 05/12/2023

Vegetative, no
flowerheads 19 21584 21584 13719

Site 4 TSR Dec 2023 Fuji NR
MicaSense
RedEdge 05/12/2023

Vegetative, no
flowerheads 20 51376 24292 24292

In total, 59 quadrats are available which have been validated on the ground. 56533 images in total are available,
from 2 cameras and multiple GSDs, collected during two different years and vegetative states. The mask images
are labeled in the following way: Pixel value 0 denotes ALG pixels, 127 non-alg vegetation and 255 denotes
non-vegetation pixels. Datasets are cleaned by removing all images and their associated label files, where all pixels
are either black or white - these are boundary areas from orthomosaics that have been tiled:
Dataset histograms are calculated by counting the amount of pixels with label “ALG” and displaying the buckets
that these have. [1]

https://csuprod.sharepoint.com/sites/RSRCH-WeedManagersRemoteDetection/Shared%20Documents/Forms/AllItems.aspx?newTargetListUrl=%2Fsites%2FRSRCH%2DWeedManagersRemoteDetection%2FShared%20Documents&viewpath=%2Fsites%2FRSRCH%2DWeedManagersRemoteDetection%2FShared%20Documents%2FForms%2FAllItems%2Easpx&id=%2Fsites%2FRSRCH%2DWeedManagersRemoteDetection%2FShared%20Documents%2FALG%2FFlight%20logs%20and%20ground%20truth%20data&viewid=bb506cc6%2Dc1a7%2D485a%2Db50d%2D4c70dbe90348
https://csuprod.sharepoint.com/sites/RSRCH-WeedManagersRemoteDetection/Shared%20Documents/Forms/AllItems.aspx?newTargetListUrl=%2Fsites%2FRSRCH%2DWeedManagersRemoteDetection%2FShared%20Documents&viewpath=%2Fsites%2FRSRCH%2DWeedManagersRemoteDetection%2FShared%20Documents%2FForms%2FAllItems%2Easpx&id=%2Fsites%2FRSRCH%2DWeedManagersRemoteDetection%2FShared%20Documents%2FALG%2FFlight%20logs%20and%20ground%20truth%20data&viewid=bb506cc6%2Dc1a7%2D485a%2Db50d%2D4c70dbe90348
https://www.zotero.org/google-docs/?Oo3xfp


Site 1 - McDonald’s

Site 3 - Kuma

Site 2 - Gliding Club

Site 4 - TSR



These histograms show the number of image with a certain percentage of ALG at each site.
It can be observed from the histograms that e.g. for Kuma, site 3, there are a lot of images
which have 0-10% of their pixels noted with class 0 for ALG, while for example for Glide Club
there appear to be a lot of images which are almost entirely made up of ALG.

McD and TSR appear both to have a lot of images which are either fully ALG or not at all.
This can be interpreted that McD and TSR either have large patches of ALG / non-ALG or
even separate areas where there is either or. For Kuma this would indicate a lot of areas
where there is no ALG at all, or if it is, then it is very sparse. The GC site appears to be
almost entirely covered by ALG.

The figure shows an example ALG sample, where black values indicate ALG, gray indicates
vegetation and white non-vegetation. 52.58 % of all pixels are considered ALG.

Test Datasets
The performance of models is tested on the square-corrected quadrats of the other site. So
models trained on site 1 for flowering ALG are tested on the quadrats of site 2. Models
trained for vegetative ALG on site 4 are tested on quadrats of site 3. The label for the
quadrats is generated from the validation spreadsheets and calculating the percentage of
ALG in the quadrat. The example shows the square-corrected quadrat 10 at Site 4 - TSR.
256 x 256



The uncorrected image, loaded into a contemporary deep learning library such as pytorch,
would have a lot of 0-padding values around the borders. These would highly distort the
prediction of the filters, hence not yielding representative results, which is the reason for the
square-correction.

Models
A suite of models has been developed as part of this research. ALG is difficult to delineate
and for monitoring and management purposes, it is not as important to know where exactly
certain plants are located, but more that there is a presence and a spread. Treatment cannot
be targeted at individual plants but must be done effectively over large areas.
Therefore, classification of 256 x 256 patches was chosen as a suitable computer vision
task. Training samples are described above. Models were developed on site 1 and site 4 and
tested on the quadrat images from site 2 and 3 respectively, so flowering and vegetative
datasets separately.
ResNet models, one of the most successful models in computer vision, were used for
detection [2], which despite their age and being outperformed by more recent transformer
models, have been shown effective in remote-sensing tasks on low volume data [3].

https://www.zotero.org/google-docs/?2ENmi0
https://www.zotero.org/google-docs/?oTAa9E


Central to ResNets are skip connections, which skip blocks and append the input to the
output, so that the layers in between only need to learn the difference, similar to Gaussian
integrators.

This approach enabled deeper models and common ResNet variants are 18, 34, 50, 101
and 152. The figure shows a 34-layer network.

Preliminary experiments on a subset of the data showed that ResNets 34 to 101 were
effective and fewer-layer models showed degrading performance, while models with more
layers took too long to train for diminishing returns in performance.
Three variants of the training were used to asses the impact:

1. training a model from random weights
2. training a model from an imagenet variant
3. transfer learning from imagenet, with only the last layer learnable

The following image augmentations were used to reduce overfitting and enable the models
to potentially generalise better:

● Flipping / Rotations with a probability of 0.5
● HSV, Gamma, Brightness Contrast and Gaussian noise with a probability of 0.5
● Elastic or Optical Distortions with a probability of 0.5
● Normalisation to

○ mean 0.485, 0.456, 0.406
○ sd 0.229, 0.224, 0.225

Models are trained with the Adam optimizer in a pytorch-lightning implementation with a
learning rate of 0.001, batch sizes of 16 and early stopping with 20 epochs patience and a
maximum of 200 epochs.
In preliminary experiments on site 4, all ResNet models exhibit a similar accuracy, between
60 and 80 %. Smaller models generally perform on par with larger models and often better,
with accuracies in the high 70s range. Only finetuning the last layer does not yield major
benefits, indicating that the domain of images is vastly different from the default imagenet
domain, however, transfer learning yields results comparable to learning from scratch. While
smaller networks appear to perform similarly independent of training regime, larger networks



exhibit major differences, with only fine tuning the last layer performing poorly in comparison.

Resnet Variant
Validation
Accuracy Test Accuracy Model Epoch

18 vanilla 0.93 0.6875 93

transfer 0.93 0.625 88
appears to
converge earlier

finetune 0.9 0.625 57
drop in
accuracy

34 vanilla 0.94 0.75 136

transfer 0.94 0.875 116
appears to
converge earlier

finetune 0.89 0.625 76
drop in
accuracy

50 vanilla 0.93 0.8125 186

transfer 0.93 0.6875 100
appears to
converge earlier

finetune 0.9 0.625 10
drop in
accuracy

101 vanilla 0.94 0.6875 168

transfer 0.94 0.75 98
appears to
converge earlier

finetune 0.89 0.625 88
drop in
accuracy

152 vanilla 0.93 0.8125 185

transfer 0.93 0.75 152
appears to
converge earlier

finetune 0.91 0.75 68
drop in
accuracy

AutoEncoders
Autoencoders are models that attempt to encode and compress the data that they are
presented with. This works by funnelling the information through a “bottleneck” layer z and



calculating a loss on the reconstruction x_hat. This way, the bottleneck layer z is enabled to
contain a more compact representation of the information in input x.

ResNets have been shown to be effective Autoencoders on the example of small-scale
32x32 pixel datasets [4]. Common sizes for z are 512, 256 or 1024, which is much smaller
than 32x32x3 (R, G, B) - 3072 parameters.
Autoencoder variants with 32x32 pixels and 256 x 256 pixels have been used. While in the
case of 256 x 256 pixels there is a lot more context visible, the information necessary to be
compressed into the bottleneck layer is far larger and there are more parameters to be
learned by the model and decoder. In this case, 196608 parameters would have to be
compressed into the bottleneck layer.

Unlabeled Datasets
For all sites there are multiple camera raw images available. These are used to train the
autoencoders. Raw images are from the following sites, cameras GSDs and resolutions:

Site Camera GSD Resolution MB per image Image Count

Site 1 - McD DJI P1 8192 x 5460 14 227

Fuji 50 m 4000 x 3000 6 249

Phase 1 11664 x 8750 80 100

Site 2 - GC DJI P1 40 m 8192 x 5460 20 231

DJI P1 80 m 8192 x 5460 20 70

Phase 1 11664 x 8750 90 57

Site 3 - Kuma DJI P1 5280 x 3956 5 14

Fuji 11648 x 8736 63 99

Phase 1 11664 x 8750 80 100

Site 4 - TSR DJI P1 007 5280 x 3956 5 4

DJI P1 008 5280 x 3956 6 5

Fuji 11648 x 8736 63 99

Phase 1 11664 x 8750 82 100

Because image resolution is large and memory loading is difficult for files of that size at
runtime, between two and three thousand 256 x 256 crops are generated, which are then
used as sample inputs with random crops of 32x32 at runtime to train autoencoders.

https://www.zotero.org/google-docs/?WIgEaN


Orthomosaic-Base-Datasets

Sites Camera GSD
Image
Resolution

Image Size in
MB Image Count

Site 1 - McD Fuji GFX100 0,22 cm 4000 x 3000 6 249

Site 2 - GC DJI P1 40m 0,48 cm 8192 x 5460 16 231

Site 3 - Kuma Fuji GFX100 0,22 cm 11648 x 8736 70 165

Site 4 - TSR Fuji GFX100 0,24 cm 11648 x 8736 70 285

For specific autoencoders, only the base datasets were used that also created the
orthomosaics, to stay within the same camera generation space.

Experiments
In normal cases, the volume of labels that is available for this kind of research is limited and
the quality is questionable, since all labels are required to be generated by qualified labelers
[5]. ALG is hard to identify by hand and only 59 images have been validated on the ground,
while for this research there are 56533 labeled images available, even though these have
been generated by MS imagery.
For this research, the impact of training with lower volume datasets is tested, by only using
subsets of the available labeled data of 10 or 1 %.
Furthermore, it is tested whether pre training with autoencoders yields a benefit, so that
model capacity is improved.

https://www.zotero.org/google-docs/?EMsr3Z


Results
Training happens on one set of sites and test accuracy is presented on the validated quadrats of the other dataset. E.g for flowering images,
training happens on all MS-generated images from site 1 and only the validated quadrats with numbers estimated by hand on site 2, while for
vegetative training on site 4 and testing on site 3. Combined fuses both datasets into a single training and testing regime. This is not just the
average of both because of the imbalance of image volume in training and testing. Validation accuracy represents the accuracy during training
epochs on a subset of training data withheld from training. Test accuracy is on the quadrats from the other site. It is given as percentage of
images correctly identified.

Flowering Vegetative Combined

Resnet Variant
Validation
Accuracy

Test
Accuracy

Model
Epoch

Validation
Accuracy

Test
Accuracy

Model
Epoch

Validation
Accuracy

Test
Accuracy

Model
Epoch

34 transfer 0.93 0.9 72 0.94 0.4737 73 0.93 0.5172 53

50 transfer 0.93 0.9 78 0.93 0.4737 119 0.93 0.5862 76

101 transfer 0.93 0.7 174 0.94 0.4737 104 0.92 0.5172 109

18 ae-32 0.93 0.7 125 0.91 0.5263 20 0.93 0.5162 101

18 ae-256 0.93 0.9 33 0.93 0.4211 107 0.92 0.5862 97

34 ae-32 0.92 0.9 37 0.93 0.5789 56 0.93 0.6207 66

The table shows that the models have a much higher accuracy detecting flowering ALG than vegetative. ResNets pretrained with autoencoders
achieve comparable accuracies, often with less training epochs, despite being smaller in general (and therefore requiring less weights). It is
evident that vegetative ALG is much more difficult to detect with RGB imagery. Autoencoder pre training does not improve the test accuracy
significantly for vegetative data. However, training epochs after pre training with autoencoders are much lower than training transfer learning
models pre trained on imagenet.
Note that the models trained with autoencoders are smaller than the other models. The largest Autoencoder model is the smallest normal
model.



Reducing the Volume of Data

10 %
Flowering Vegetative Combined

Resnet Variant
Validation
Accuracy

Test
Accuracy

Model
Epoch

Validation
Accuracy

Test
Accuracy

Model
Epoch

Validation
Accuracy

Test
Accuracy

Model
Epoch

34 transfer 0.94 0.9 15 0.94 0.3684 64 0.93 0.5862 147

50 transfer 0.95 0.9 39 0.93 0.5789 97 0.93 0.5172 109

101 transfer 0.94 0.7 95 0.91 0.5263 37 0.92 0.4483 97

18 ae-32 0.93 0.4 64 0.9 0.3684 58 0.91 0.4483 60

18 ae-256 0.92 0.8 18 0.91 0.4737 40 0.89 0.4483 60

34 ae-32 0.92 0.9 22 0.91 0.3158 53 0.91 0.5172 66

Reducing the volume of data to 10% yields marginal increases in the validation accuracy, which is an indicator for overfitting to the training
data. Test performance for Autoencoder pretraining drops significantly, while training time reduces by a large margin to less than a hundred
epochs.

1 %
Flowering Vegetative Combined

Resnet Variant
Validation
Accuracy

Test
Accuracy

Model
Epoch

Validation
Accuracy

Test
Accuracy

Model
Epoch

Validation
Accuracy

Test
Accuracy

Model
Epoch

34 transfer 1 0.8 23 0.92 0.4737 16 0.91 0.4138 12

50 transfer 1 0.8 23 0.96 0.4737 13 0.91 0.4828 23

101 transfer 1 0.5 32 0.92 0.3684 19 0.91 0.5172 29

18 ae-32 0.94 0.9 11 0.96 0.4211 31 0.91 0.5862 17

18 ae-256 1 0.7 40 0.94 0.3684 7 0.91 0.5517 42



34 ae-32 0.88 0.3 9 0.94 0.4737 17 0.86 0.3103 9
Reducing the volume of data to 1% of the original data reduces training time until convergence even further. The perfect validation accuracy for
flowering data is a clear indicator of overfitting, while the test accuracy drops slightly.

Summary
Reducing the volume of data does not yield a significant drop in test accuracy and for the binary case, a performance fluctuating around 50%
indicates a performance as good as tossing a coin. While it appears that flowering ALG can be detected fairly well, even with only 1% of the
volume of data available, even large volumes of data do not enable models to reliably detect vegetative ALG from RGB images. This is an
indicator that the information contained in the additional channels that MS has available has a far larger discriminative power than the visual
channels RGB.#



Cross-Testing developed models
Cross testing developed models is used to confirm performance of model across unseen
data. E.g. models developed on flowering ALG are tested on vegetative datasets.

Dataset
Developed Flowering Vegetative Combined

Volume Dataset Resnet Variant
Test
Accuracy

Test
Accuracy

Test
Accuracy

100.00% Flowering 34 transfer 0.9 0.6842 0.7586

7747 50 transfer 0.9 0.7368 0.7931

101 transfer 0.7 0.5789 0.6207

18 ae-32 0.7 0.6842 0.69

18 ae-256 0.9 0.2631 0.4828

34 ae-32 0.9 0.5789 0.69

24,292 Vegetative 34 transfer 0.9 0.4737 0.621

50 transfer 0.7 0.4737 0.552

101 transfer 0.8 0.4737 0.586

18 ae-32 0.8 0.5263 0.552

18 ae-256 0.8 0.4211 0.621

34 ae-32 0.8 0.5789 0.655

32,039 Combined 34 transfer 0.6 0.4737 0.5172

50 transfer 0.9 0.421 0.5862

101 transfer 0.8 0.3684 0.5172

18 ae-32 0.8 0.3684 0.5162

18 ae-256 0.9 0.421 0.5862

34 ae-32 0.9 0.4737 0.6207

10.00% Flowering 34 transfer 0.9 0.5789 0.6897

774 50 transfer 0.9 0.78947 0.82759

101 transfer 0.7 0.7368 0.72414

18 ae-32 0.4 0.7368 0.6207

18 ae-256 0.8 0.7368 0.757

34 ae-32 0.9 0.579 0.69

2,429 Vegetative 34 transfer 0.8 0.3684 0.5172

50 transfer 0.7 0.5789 0.621

101 transfer 0.7 0.5263 0.5862

18 ae-32 0.7 0.3684 0.4828

18 ae-256 0.7 0.4737 0.55172



34 ae-32 0.8 0.3158 0.4827

3,203 Combined 34 transfer 0.9 0.421 0.5862

50 transfer 0.8 0.3684 0.5172

101 transfer 0.7 0.3158 0.4483

18 ae-32 0.8 0.2632 0.4483

18 ae-256 0.6 0.3684 0.4483

34 ae-32 0.7 0.42105 0.5172

1.00% Flowering 34 transfer 0.8 0.6842 0.7241

77 50 transfer 0.8 0.7368 0.7586

101 transfer 0.5 0.6316 0.5862

18 ae-32 0.9 0.474
0.620896551

7

18 ae-256 0.7 0.36842 0.482757931

34 ae-32 0.3 0.7368
0.586179310

3

242 Vegetative 34 transfer 0.7 0.4737 0.55

50 transfer 0.8 0.4737 0.5862

101 transfer 0.7 0.3684 0.4828

18 ae-32 0.8 0.4211
0.551755172

4

18 ae-256 0.7 0.3684
0.482744827

6

34 ae-32 0.7 0.4737
0.551734482

8

319 Combined 34 transfer 0.7 0.2631 0.4138

50 transfer 0.8 0.3684 0.4828

101 transfer 0.9 0.2631 0.5172

18 ae-32 0.9 0.42 0.5862

18 ae-256 0.9 0.3684 0.5517

34 ae-32 0.3 0.3158 0.3103

The largest three values per dataset volume are always highlighted, with the dataset used
for training listed in the second column. It is clearly visible that datasets developed on
flowering ALG data outperform both models including vegetative data, even on the
vegetative data.
This may be caused by quality of labels or by the fact that vegetative data is not as
expressive. It may also indicate a mismatch between testing and training data for the case of
vegetative images.
A clear improvement for using self-supervised autoencoders for pretraining cannot be seen,
despite always contributing to the top 3 and reducing training epochs. This may also be



caused by the fact that the training dataset for autoencoders include images from vegetative
ALG and cameras that were not used to generate orthomosaics.
Another reason may be that Autoencoders usually attempt to reproduce entire images, e.g.
the loss is not adopted for fine-grained textures, rather overall colour matching, as seen in
the following figure. It can be suspected that the compression into the bottleneck layer z
removes fine-grained edges and features, which may hold the discriminative power to
identify ALG in the wild. The combination of fine-grained plant strands with different colours
for different weeds may be key to identifying ALG.

Autoencoder images
The images show the original input image on the left and the reproduction from the
autoencoder on the right. The left image shows the 32 x 32 patches that have been
condensed into a 512-dimensional latent space, while the right shows the 256 x 256 images.



Sub-Ensembles
Sub-Ensembles can be used as an approximation to Deep Ensembles, where multiple
models are combined and trained on different subsets of the data, to make more robust and
generalizable predictions and also allow the opportunity to estimate how certain the model is
about its prediction [6], [7].
When all predictors are in agreement, it is less probable that the prediction is wrong and vice
versa, when a large factor of disagreement is present, it can be assumed that the data is not
represented well.
This can also be used to estimate when an incoming sample is out-of-distribution (OOD) e.g.
when a sample is not represented at all in the dataset, which can be very helpful to identify
different growth stages, environments or other things that cause the sample to be
considered “not part of known data”.

Instead of training entire models, which are computationally heavy, Sub-Ensembles
approximate this behaviour by only training different end-parts for prediction.

The figure shows the inherent difference. where T denotes a trunk network, a backbone, and
K the predictors. The structure is computationally much more efficient, because the same
trunk network is used and requires less training and has fewer parameters, so less prone to
overfitting and it can be trained and run on consumer-grade hardware.
Furthermore, the separation of trunk and classifier allows for different combinations of both
to be experimented with, making it an ideal candidate for experiments with autoencoders as
dense embeddings of images.

https://www.zotero.org/google-docs/?hhRBYj


The figure shows the cycle how the data collection cycle works. New data is collected and
the raw data used to train an autoencoder. The autoencoder is used as a backbone to train
multiple heads with previously labeled data. The resulting model is then used to predict
samples and decide which ones should be added to the labeled training dataset. After the
new samples have been added to the labeled dataset, the cycle is repeated.
The process of repeating a cycle multiple times over to show samples selected by a degree
of difficulty is commonly referred to as “curriculum learning” and has been shown effective in
multiple settings where dataset or model discrepancy is common [8].

Methods
This is tested with the raw datasets that have been used to generate orthomosaics, as well
as the labeled samples. At first, 100 random samples from Site 1 are added to the training
dataset. An autoencoder is trained on raw images from Site 2, and then 10 heads are trained
on the basis of that autoencoder backbone with the labels from site 1. The model predictions
for all samples from site 2 are used to evaluate the accuracy and 100 labels with the highest
cross-entropy H are added to the labeled dataset. This cycle is repeated for the next sites.

𝐻(𝑥) =  −  Σ  𝑝
𝑐
(𝑦

𝑐
 | 𝑥)  ·  𝑙𝑜𝑔(𝑝 (𝑦

𝑐
| 𝑥))

Orthomosaic Raw Datasets

Sites Camera GSD
Image
Resolution

Image Size in
MB Image Count

Site 1 - McD Fuji GFX100 0,22 cm 4000 x 3000 6 249

Site 2 - GC DJI P1 40m 0,48 cm 8192 x 5460 16 231

Site 3 - Kuma Fuji GFX100 0,22 cm 11648 x 8736 70 165

Site 4 - TSR Fuji GFX100 0,24 cm 11648 x 8736 70 285

The table shows the images and cameras used to generate the orthomosaics and also their
file sizes. The large size of raw images is prohibitive for runtime data loading, therefore 2000

https://www.zotero.org/google-docs/?rIqn3c


256 x 256 patches are used as input to autoencoder training. From these, random 32 x 32
crops are taken for predictions.

Variations and Ablations
Multiple variations and ablations are run to assess the impact of certain features:

● A baseline variation that trains normally on the labeled samples and has a single
prediction head - denoted “single” in the heads -column

● A baseline variation that trains on the entire dataset labeled by MS imagery, denoted
“full” in the selection-column

● Another baseline is a variant that does not sample by cross-entropy H, but takes 100
random labeled samples to train. Denoted “100 random2 in the selection column

● Another variant takes a denoising autoencoder as a backbone, including prediction of
hidden image patches [9] - denoted with ae denoise in the backbone column.

● A variant that only trains an autoencoder without denoising, denoted by ae in the
backbone column

● A variant that does not train any encoder at all but only uses labeled samples. -
denoted “none” in the backbone column

● Another variant does not fix the backbone for the training of the first head, allowing
for modifications between the unlabeled raw images and outputs generated by
orthomosaics. Denoted by “retrain previous” in the resnet column

Results

Base Growth state Flowering Vegetative Vegetative

68.87
Class

Percentage 74.55% 11.87% 50.51%

Site 2 3 4

resnet selection backbone heads GC Kuma TSR

18 full ae single 57.86% 34.39% 80.61%

ae denoise single 47.96% 33.87% 49.53%

none single 69.95% 28.49% 72.85%

18 100 random ae single 52.06% 16.63% 51.38%

ae denoise single 26.83% 78.69% 49.53%

none single 40.03%

ae subensemble 10 74.55% 9.52% 50.51%

ae denoise subensemble 10 74.62% 11.96% 72.16%

none subensemble 10 66.38% 11.96% 73.04%

100
entropy-based ae subensemble 10 74.55% 37.10% 49.49%

ae denoise subensemble 10 74.61% 90.55% 49.49%

none subensemble 10 74.74% 81.89% 56.33%

https://www.zotero.org/google-docs/?lJicYB


retrain
previous 100 random ae subensemble 10 74.57% 11.87% 51.21%

ae denoise subensemble 10 75.35% 12.26% 49.98%

100
entropy-based ae subensemble 10 74.59% 11.90% 50.51%

ae denoise subensemble 10 76.45% 33.44% 50.49%

The table shows inconclusive results. In some instances, autoencoder, denoising
autoencoders or Sub-Ensembles improve the results significantly, in others not.
The results indicate that there appear to be inconsistencies in the training and further
research is necessary.
One possibility is that the order of sites matters. The predictions for Site 3 come from training
from Site 4, therefore inverting the order may have an impact on the quality and further
research is necessary.

Conclusions
Detecting ALG in the wild is a difficult task. Since it is a grass, there are many false positives
and detecting boundaries from other grass species is difficult. However, the detection of
single strands is not a requirement but only the presence, since it usually presents in
patches. Identifying these is possible in a flowering state, but much more difficult in a
vegetative state. Complex approaches to modelling uncertainty and using self-supervised
pre training have not yielded conclusive results to improving the quality and further work is
necessary.
Future work can focus on integrating the information from MS imagery into the RGB
prediction pipeline, as well as improving the capabilities to detect vegetative ALG, as this
performance appears poor overall.
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