Breeding for quality lamb meat from Merinos

Sue Mortimer
NSW Department of Primary Industries
Livestock Industries Centre
Ardmide NSW 2351
Background

• Merinos ➔ role in wool and meat production systems
 • Self-replacing Merino flocks
 • Dual purpose selection indexes via MerinoSelect (DP, DP+)

• Increasing consumer preferences for lamb of premium quality

• Decline in meat quality from selection for lean meat yield in other breeds

• Implications for Merino breeding programs
 • Intramuscular fat (IMF), shear force (tenderness)
 • pH
 • Meat colour, mineral content
Background

- Merinos role in wool and meat production systems
 - Self-replacing Merino flocks
 - Dual purpose selection indexes via MerinoSelect (DP, DP+)

- Increasing consumer preferences for lamb of premium quality

- Decline in meat quality from selection for lean meat yield in other breeds

- Implications for Merino breeding programs
 - Intramuscular fat (IMF), shear force (tenderness)
 - pH
 - Meat colour, mineral content
Background

- Merinos ➞ role in wool and meat production systems
 - Self-replacing Merino flocks
 - Dual purpose selection indexes via MerinoSelect (DP, DP+)

- Increasing consumer preferences for lamb of premium quality

- Decline in meat quality from selection for lean meat yield in other breeds

- Implications for Merino breeding programs
 - Intramuscular fat (IMF), shear force (tenderness)
 - pH
 - Meat colour, mineral content
Background

• Merinos role in wool and meat production systems
 • Self-replacing Merino flocks
 • Dual purpose selection indexes via MerinoSelect (DP, DP+)

• Increasing consumer preferences for lamb of premium quality

• Decline in meat quality from selection for lean meat yield in other breeds

• Implications for Merino breeding programs
 • Intramuscular fat (IMF), shear force (tenderness)
 • pH
 • Meat colour, mineral content
Intramuscular fat (IMF)

- Key driver of eating quality
 - Tenderness
 - Juiciness
 - Flavour

- 4 % IMF lower limit

- 4.6 % average IMF level in Merinos
 - Information Nucleus flock
 - 1200 Merino records
Variation in IMF of Merino lamb loins

Source: Information Nucleus flock carcass data
Meat quality traits

- Determined post mortem
- pH
 - Colour
 - Tenderness
 - Shelf-life of lamb
- High pH
 - Dry, firm and dark-cutting meat
 - Acceptable at 5.7 and below
Meat quality traits

- Shear force (tenderness)
- Fresh meat colour (lightness, redness)
- Retail colour stability
- Nutritional value
 - Iron content of the muscle
 - Zinc content
pH - variation in Merino lamb loins

Source: Information Nucleus flock carcass data
Shear force (tenderness) - variation in Merino lamb loins

Source: Information Nucleus flock carcass data
Retail colour stability of Merino lamb loins

Source: Information Nucleus flock carcass data
Variation in iron content of Merino lamb loins

Source: Information Nucleus flock carcass data
How do Merinos perform in meat quality?

Source: Information Nucleus flock carcass data

<table>
<thead>
<tr>
<th>Trait</th>
<th>Target</th>
<th>Mean</th>
<th>Range</th>
<th>Heritability</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMF (%)</td>
<td>4 - 5</td>
<td>4.6</td>
<td>1.9 – 10.4</td>
<td>High</td>
</tr>
<tr>
<td>pH</td>
<td>5.7</td>
<td>5.7</td>
<td>5.3 - 6.4</td>
<td>Moderate</td>
</tr>
<tr>
<td>Shear force (N)</td>
<td>27</td>
<td>31.0</td>
<td>12.3 - 95.1</td>
<td>Low</td>
</tr>
<tr>
<td>Fresh colour redness</td>
<td>9.5</td>
<td>18.5</td>
<td>10.9 - 28.6</td>
<td>Low</td>
</tr>
<tr>
<td>Fresh colour lightness</td>
<td>34</td>
<td>34.1</td>
<td>24.4 – 47.0</td>
<td>Moderate</td>
</tr>
<tr>
<td>Retail colour stability</td>
<td>3.3</td>
<td>3.2</td>
<td>2.0 - 6.4</td>
<td>Low</td>
</tr>
<tr>
<td>Iron content</td>
<td>20</td>
<td>22.1</td>
<td>12.0 - 39.9</td>
<td>Moderate</td>
</tr>
<tr>
<td>Zinc content</td>
<td>20</td>
<td>25.9</td>
<td>14.2 - 44.9</td>
<td>Low</td>
</tr>
</tbody>
</table>
Eating quality traits

- Tenderness
 - Soluble collagen
 - IMF
- Juiciness
 - IMF
 - Protein structures
- Flavour
 - Fatty acid profile
 - Protein and lipid oxidation
- Overall liking
Relationships with yearling wool production traits

<table>
<thead>
<tr>
<th></th>
<th>yCFW</th>
<th>yFD</th>
<th>yWT</th>
<th>ySS</th>
<th>CEMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intramuscular fat</td>
<td>▼</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Shear force</td>
<td>▼</td>
<td>●</td>
<td>▼</td>
<td>▲</td>
<td>●</td>
</tr>
<tr>
<td>pH</td>
<td>●</td>
<td>▼</td>
<td>●</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Fresh colour redness</td>
<td>▼</td>
<td>●</td>
<td>●</td>
<td>▼</td>
<td>▼</td>
</tr>
<tr>
<td>Fresh colour lightness</td>
<td>●</td>
<td>●</td>
<td>▼</td>
<td>●</td>
<td>▼</td>
</tr>
<tr>
<td>Iron content</td>
<td>●</td>
<td>●</td>
<td>▼</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Zinc content</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
Relationships with key production traits

<table>
<thead>
<tr>
<th></th>
<th>yEMD</th>
<th>yFAT</th>
<th>LMY</th>
<th>mBRWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intramuscular fat</td>
<td>▼</td>
<td>●</td>
<td>▼</td>
<td>●</td>
</tr>
<tr>
<td>Shear force</td>
<td>●</td>
<td>●</td>
<td>▼▼</td>
<td>●</td>
</tr>
<tr>
<td>pH</td>
<td>▲▲</td>
<td>▲</td>
<td>▲</td>
<td>●</td>
</tr>
<tr>
<td>Fresh colour redness</td>
<td>▲▲</td>
<td>▲▲</td>
<td>▼▼▼</td>
<td>▲</td>
</tr>
<tr>
<td>Fresh colour lightness</td>
<td>▼</td>
<td>▼</td>
<td>▲▲</td>
<td>▼</td>
</tr>
<tr>
<td>Iron content</td>
<td>▲</td>
<td>●</td>
<td>▼</td>
<td>●</td>
</tr>
<tr>
<td>Zinc content</td>
<td>▼</td>
<td>▼</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
Relationships among meat quality traits

<table>
<thead>
<tr>
<th></th>
<th>IMF</th>
<th>SF</th>
<th>pH</th>
<th>Redness</th>
<th>Lightness</th>
<th>Iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
<td>▲▲▲▲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>●</td>
<td>▼▼</td>
<td>▲▲</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redness</td>
<td>▲</td>
<td>●</td>
<td>▲▲</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lightness</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>▲</td>
<td>●</td>
<td>▲▲</td>
<td>▲▲▲▲</td>
<td>▼</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>▲▲</td>
<td>▲</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
Summary

• Improving meat quality in Merinos is feasible
 • Traits are heritable
 • IMF, pH and iron content

• Generally meat quality traits little affected from breeding emphasising wool production
 • Low to negligible genetic relationships
 • Monitor traits
 IMF where fleece weight is emphasised
 pH where fibre diameter is emphasised

• On-going research gathering more data
 • More accurate heritability and genetic relationships
 • More genetic relationships ➔ reproduction and welfare traits
Summary

- Breeding for quality lamb from Merinos
 - Breeding objectives
 - Indexes to improve meat quality while managing changes in other traits
 - Genomic information ➔ ASBVs e.g. eating quality indexes for terminal sire breeds

(Source: Sheep Genetics web site, accessed 16/07/2019)
Acknowledgments

Innovative research undertaken by the meat science and genetics programs of the Sheep CRC underpins this work.
Thank you

sue.mortimer@dpi.nsw.gov.au