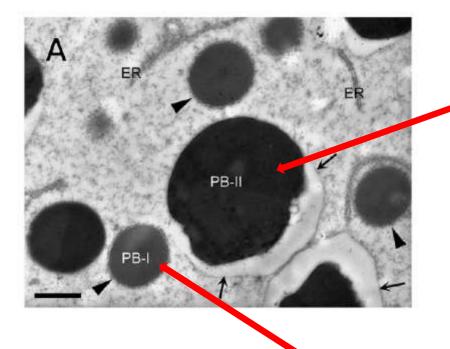


The role of protein in rice quality

Dan Waters


ARC Industrial Transformation Training Centre for Functional Grains

Rice grain proteins

Defined by solubility differences

• PB-II

Ashida et al. Breeding Science 61: 201–207

• PB-I

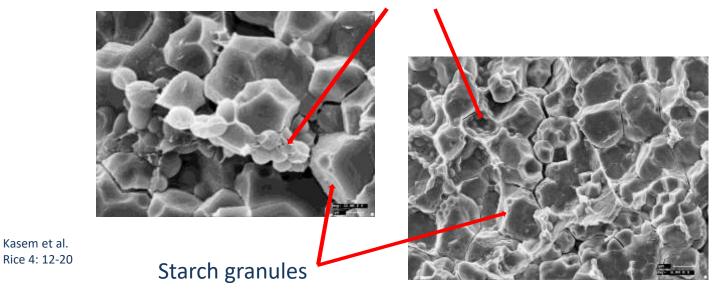
→ prolamins, alcohol soluble, poorly digested
~10-20% of rice grain, ~55% of wheat grain

 \rightarrow globulins, salt soluble

~5-10% of rice grain, ~5% of wheat grain

~65-80% of rice grain, ~40% of wheat grain

 \rightarrow glutelins, dilute acid/alkali soluble



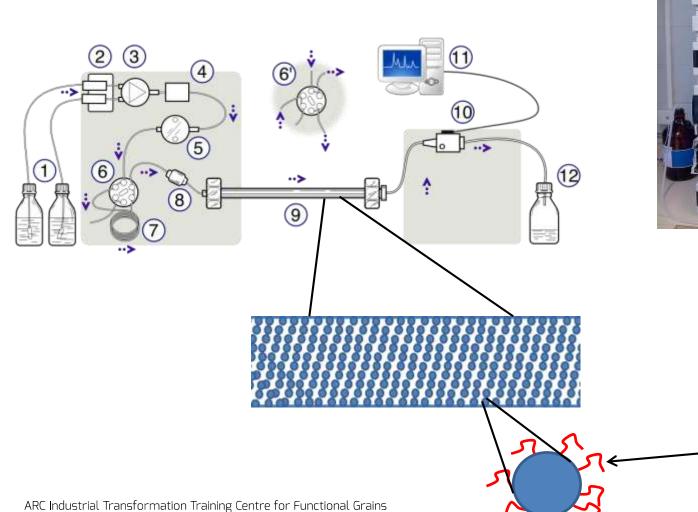
ARC Industrial Transformation Training Centre for Functional Grains

Rice grain proteins

Protein bodies

• Subtraction-addition experiments -> amount and ratio of each type of protein influences rice flour and grain properties differently

• Do rice cultivar differences in grain protein composition influence rice grain quality?


csu.edu.au/research/i

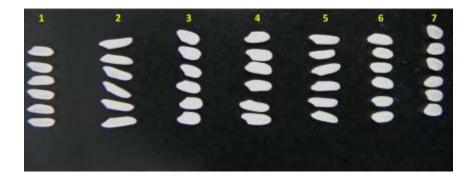
ARC Industrial Transformation Training Centre for Functional Grains

Kasem et al.

HPLC analysis



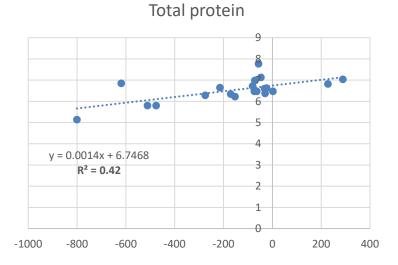
-"Fatty" chains C4, C8, C18


Rice grain HPLC prolamin profiles

• Qualitative and quantitative protein composition differences

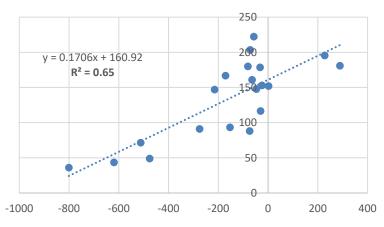
ARC Industrial Transformation Training Centre for Functional Grains

Samples analysed

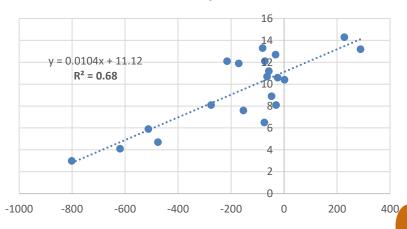

- 2013 QEP samples: 149 16-20% amylose samples, long and medium grain. High proportion of broken grain samples. 20 "Sushi" cultivars - local and international.
- 2014 QEP samples: 80 long and 80 medium grain 17 -20% amylose samples.
- 2016 QEP samples: 80 17 -20% amylose medium grain samples.
- Protein composition correlated with QEP data.

csu.edu.au/researc

Sushi prolamins and RVA setback 🎎 FGC



21.00 20.50 y = 0.0025x + 19.519 20.00 $R^2 = 0.54$ 19.50 19.00 18.50 18.00 17.50 17.00 -1000 -800 -200 0 200 400 -600 -400


% Amylose

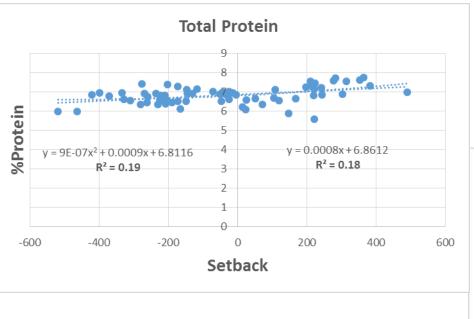
Total prolamin

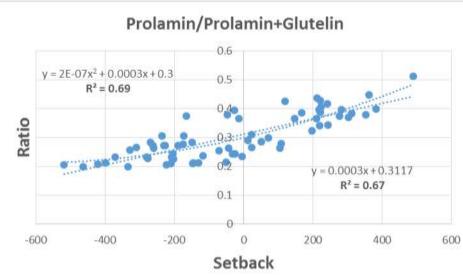
ARC Industrial Transformation Training Centre for Functional Grains

Prolamin peak 26

• HPLC protein profiles of 80 long grain and 80 medium grain lines and cultivars of 17% - 20% amylose correlated (≤-0.5 or ≥0.5) with texture parameters

• Albumin and globulin displayed very low levels of variation


	Long grain Profile 1	Long grain Profile 2	Medium grain Profile 1	Medium grain Profile 2
# Samples	53	27	67	13
% Protein	6.3 - 10.3	6.4 - 8.5	5.6 - 7.8	5.5 - 9.8
Pasting Temp (°C)	68 - 77	67-78	66 - 69	66 -76
RVA correlations	Prolamin	NS	Prolamin	Protein (prolamin)
TA correlations	Glutelin	NS	Prolamin (1)	Glutelin

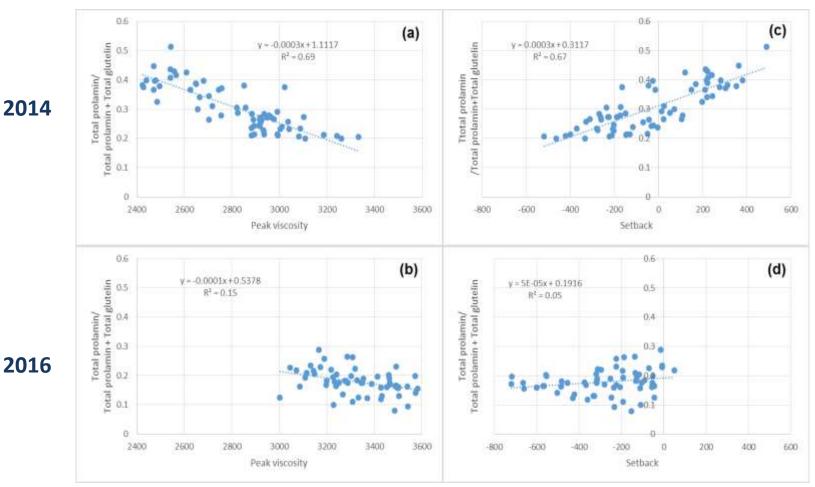

csu.edu.au/researcl

ARC Industrial Transformation Training Centre for Functional Grains

2014 QEP medium grain Profile 1

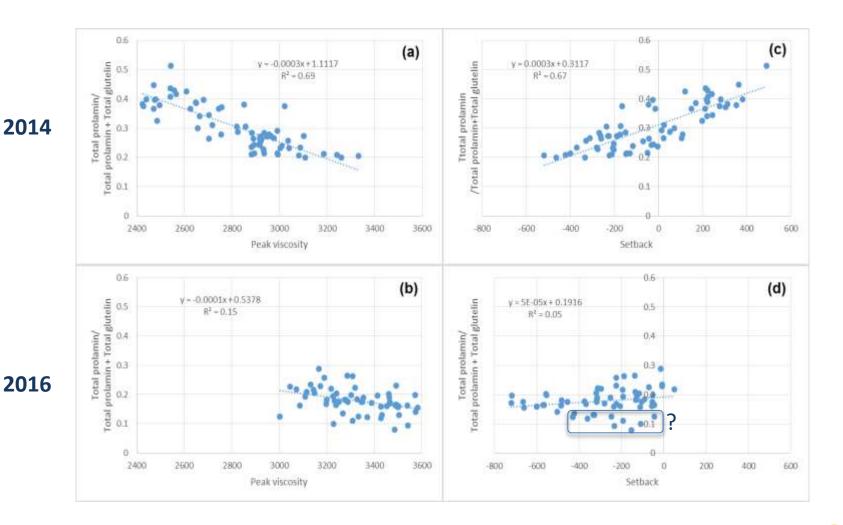
• Prolamin / Prolamin + Glutelin ratio a better predictor of Setback (cooked rice firmness) than Total Protein and Prolamin (R²=0.44)

ARC Industrial Transformation Training Centre for Functional Grains

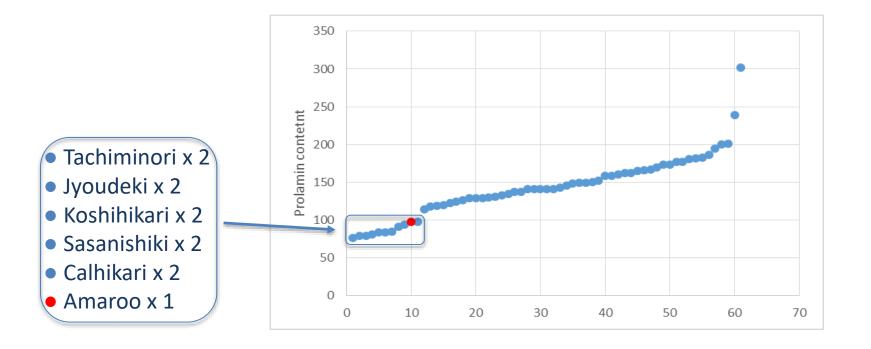

Mean/population protein composition differed between years

Year	Total globulin mean AUC; CV	Total prolamin mean AUC; CV	Total glutelin mean AUC; CV	Prolamin/ Prolamin + Glutelin ratio mean; CV
2014 MG-Profile1 (67 samples)	466; 8	248; 29	583; 24	0.30; 26
2016 MG-Profile1 (61 samples)	316; 10	148; 34	670; 17	0.18; 27

ARC Industrial Transformation Training Centre for Functional Grains


2014 and 2016 QEP medium grain Profile 1 FGC

ARC Industrial Transformation Training Centre for Functional Grains


2014 and 2016 QEP medium grain Profile 1 FGC

ARC Industrial Transformation Training Centre for Functional Grains

2016 QEP medium grain Profile 1

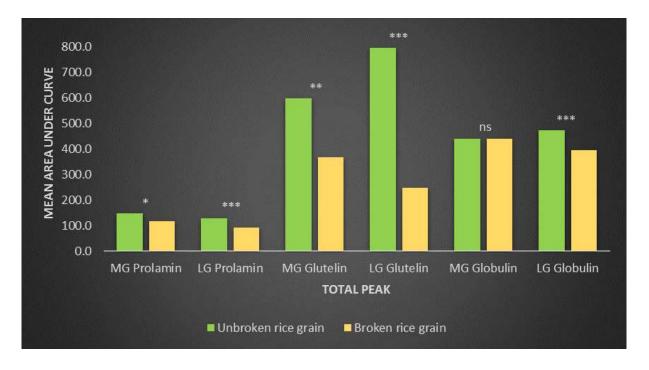
• Japanese reference (in Japanese) -> high quality associated with low PB-I (prolamin) content

csu.edu.au/research/fg

ARC Industrial Transformation Training Centre for Functional Grains

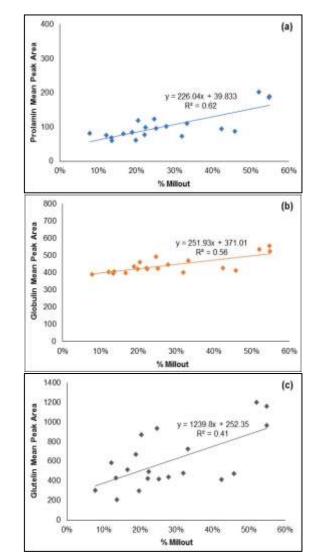
2013 samples

• 149 16-20% amylose samples, long and medium grain. High proportion of broken grain samples.


- Correlations weak when:-
 - Long and medium grain data analysed together
 - Broken grains included; protein composition dependent?

Grain breakage

Unbroken vs broken grain


Protein type	MG	LG
Proteintype	% Difference	% Difference
Total prolamin	-21%	-27%
Total glutelin	-39%	-69%
Total globulin	0%	-16%

ARC Industrial Transformation Training Centre for Functional Grains

Grain breakage – Medium grain

Unbroken grain

ARC Industrial Transformation Training Centre for Functional Grains

Globulins are the least variable fraction but strongest discriminator between unbroken and broken grains followed by prolamins

> Discriminant analysis ten most significant variables

Glob 16	0.22879
Glob 17	0.08532
Glob 15	0.05590
Glob 14	0.04199
Glob 3	0.02928
Glob 6	0.02510
Prol 6	0.02291
Prol 8	0.02170
Prol 9	0.02057
Glob 10	0.01905

In summary

Protein composition is a background dependent part of the rice grain quality puzzle

- A component of medium/short grain texture
- Plays a role in long grain texture but not as prominent as in medium/short grains
- Associated with grain breakage
- Possible interaction with and between grain breakage, grain texture and grain size

csu.edu.au/researcl

Acknowledgements

Jeanette Balindong, Ben Liu, Rachelle Ward, Margrit Martin, Laura Pallas, Ben Ovenden, Peter Snell

NSWDPI rice breeding and quality program

ARC Industrial Transformation Training Centre for Functional Grains